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Abstract 

Study Objectives:  Sleep loss contributes to various health issues and impairs neurological function. Molecular hydrogen has recently 
gained popularity as a nontoxic ergogenic and health promoter. The effect of molecular hydrogen on sleep and sleep-related neural 
systems remains unexplored. This study investigates the impact of hydrogen-rich water (HRW) on sleep behavior and neuronal acti-
vation in sleep-deprived mice.

Methods:  Adult C57BL/6J mice were implanted with electroencephalography (EEG) and electromyography (EMG) recording electrodes 
and given HRW (0.7–1.4 mM) or regular water for 7 days ad libitum. Sleep–wake cycles were recorded under baseline conditions and 
after acute sleep loss. Neuronal activation in sleep- and wake-related regions was assessed using cFos immunostaining.

Results:  HRW increased sleep consolidation in undisturbed mice and increased non-rapid-eye movement and rapid-eye-movement 
sleep amount in sleep-deprived mice. HRW also decreased the average amount of time for mice to fall asleep after light onset. 
Neuronal activation in the lateral septum, medial septum, ventrolateral preoptic area, and median preoptic area was significantly 
altered in all mice treated with HRW.

Conclusions:  HRW improves sleep consolidation and increases neuronal activation in sleep-related brain regions. It may serve as a 
simple, effective treatment to improve recovery after sleep loss.
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Statement of Significance

Over 10% of the global population struggles with sleep loss, and few effective treatments do not have deleterious side effects. This 
study presents hydrogen-rich water as a safe, accessible potential therapeutic avenue for treating sleep-related disorders.

Introduction
Poor sleep is a hallmark of modern society. Nearly 30% of 
American adults average ≤6 hours of daily sleep [1], and more 
than 10% of the global population has experienced some form 
of insomnia [2]. This widespread problem has severe and com-
plex consequences for individual health. Acute sleep loss gen-
erates proinflammatory responses [3], increases physiological 
stress [4], impairs memory [5], decreases insulin sensitivity [6], 
and may accelerate the progression of chronic complex diseases 
[7]. Chronic sleep loss is associated with significantly increased 

mortality [8]. There are global and local consequences of sleep 
loss in the brain and body [9, 10], and disrupted sleep is a risk 
factor and consequence of many disorders [11, 12]. In instances of 
comorbid mental health disorders and insomnia, improving sleep 
is often sufficient to improve symptoms of the comorbid disorder 
[13]. Behavioral interventions for improving sleep can be effective 
but are often inadequate to resolve common sleep disturbances. 
If behavioral interventions fall short, pharmaceutical hypnotics 
are often prescribed because they are fast-acting. However, unde-
sirable side effects often accompany these drugs, and long-term 
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use can lead to drug dependence [13]. Other drugs commonly 
prescribed to resolve poor sleep are re-purposed “off-label” drugs 
that have a range of biological impacts beyond sleep. The value of 
an intervention that improves sleep quality or reduces the conse-
quences of sleep loss without deleterious side effects cannot be 
easily overstated.

Over the last decade, molecular hydrogen (H2 gas) has gained 
attention as a promising therapeutic with a wide range of poten-
tial benefits, such as the regulation of proinflammatory medi-
ators [14] and the modulation of insulin sensitivity [15]. H2 has 
no reported cytotoxicity even at high concentrations and is thus 
widely accepted to have no deleterious side effects [16]. H2 can 
be administered via inhalation or dissolved in either saline or 
in water (hydrogen-rich water, HRW). Depending on the dose/
concentration, oral ingestion of HRW may increase levels of H2 
in the brain [17]. In rats, HRW dose-dependently increases H2 
concentration in the blood [18]. Importantly, H2 appears to have 
region-specific influence on brain metabolism in humans [19]. 
Oral administration of HRW was more effective than inhala-
tion of H2 at attenuating dopaminergic cell loss in a rat model of 
Parkinson’s Disease [20]. Recent work in humans demonstrates 
that HRW may increase alertness and cognitive function similarly 
to caffeine but likely through a different mechanism [19]. In the 
face of pharmacological or chemical challenges, HRW appears to 
act as a neuroprotectant in the hippocampus [21]. While numer-
ous reports have demonstrated that HRW can favorably modulate 
various neurobiological processes and behavior, its effect of HRW 
on sleep remains unknown.

In this study, we tested the ability of 7 days of ad libitum 
access to HRW at 0.7–1.4 mM to alter baseline sleep–wake archi-
tecture and the response to acute sleep deprivation in wild-
type C57BL/6J mice. We use polysomnography to assess several 
electrophysiological and behavioral markers of circadian activ-
ity and sleep pressure in freely moving mice. This randomized, 
within-participants investigation of HRW’s effect on sleep and 
wake behavior is the first of its kind. Separately, we performed 
a between-participants assessment of neuronal activation in 
known sleep- and wake-related brain regions following the HRW 
treatment regimen described above.

Materials and Methods
Animals
Adult C57BL/6J mice were maintained at the University of 
California Los Angeles under a 12–12 hours light–dark cycle 
(LD) in a light- and temperature-controlled study area overseen 
by the University Animal Research Committee and Division of 
Laboratory Animal Medicine. Food and water were provided ad 
libitum except when otherwise described. Sleep deprivation was 
performed by experts blinded to experimental conditions using 
gentle handling. Experiments were performed using the National 
Institutes of Health Guidelines for the Care and Use of Laboratory 
Animals and approved by the Institutional Animal Care and Use 
Committee. For a complete timeline of animal experiments see 
Supplementary Figures S1 and S2.

Polysomnographic implantations
Adult C57BL/6J mice (postnatal week 10; n = 10; male = 6, female = 4) 
mice were implanted with EEG/EMG headmounts for polysomno-
graphic (PSG) recording. As previously reported [22], mice were 
implanted with 4x EEG and 2x EMG electrodes under anesthesia. 
Two electrodes (frontal-parietal and ground) were located 1.5 mm 

anterior to bregma and 1.5 mm on either side of the central suture 
(EEG1). Two additional electrodes (parietal-occipital and common 
reference) were located 2.5 mm posterior to bregma and 1.5 mm 
on either side of the central suture (EE2). Electrical continuity 
between the screw electrode and headmount was achieved with 
silver epoxy. EMG activity was monitored using stainless-steel 
Teflon-coated wires inserted into the nuchal muscle. The head-
mount (2 × 3 pin grid array) was secured to the skull with dental 
acrylic. Seven days after surgery, mice were transferred to sound-
attenuated chambers and connected to the data acquisition sys-
tem. In the recording chambers, mice acclimated to a lightweight 
tether attached to a low-resistance commutator mounted above 
the cage for an additional 7 days before recording. Mice had free 
range of movement throughout all tethered experiments.

HRW preparation
HRW was produced by adding magnesium-based tablets to 
590 mL of deionized water in polycarbonate bottles. Elemental 
magnesium reacts with water to produce hydrogen by the fol-
lowing reaction: Mg + H2O → H2 + Mg(OH)2. Bottles were sealed 
and left overnight at 4°C for next-day administration. H2 levels of 
~2 ppm (10 μL/g; 1.0 mM) and 2-hour half-life in glass administra-
tion bottles were confirmed by H2Blue titration assay (H2 Sciences; 
Henderson, NV). Tablets were provided by HRW Natural Health 
Products (New Westminster, BC, Canada).

HRW administration
Mice were pseudo-randomly assigned to one of two groups to 
account for unintended order effects. Group 1 had ad libitum 
access to standard deionized water for 7 days, immediately fol-
lowed by a 24-hour polysomnographic recording, and subsequent 
6 hours of sleep deprivation by gentle handling and 18 hours of 
recovery sleep. Starting the following day, mice had ad libitum 
access to HRW for 7 days. The half-life of the gas was determined 
to be approximately two hours, and so the water was replaced 
every two hours during their active phase to maintain HRW con-
centrations of 1.0–2.0 ppm throughout the active phase of each 
day. Mice had access to the latest administered HRW throughout 
their inactive phase. Immediately following the 7th day of HRW 
treatment, another 24-hour recording was collected, followed by 
another 6 hours of sleep deprivation and 18 hours of recovery. 
Mice had ad libitum access to standard deionized water during 
the recording period and did not receive HRW. Group 2 underwent 
the opposite schedule to account for any potential order effects 
of the treatment condition. While receiving standard deionized 
water for 7 days, cages of both groups were gently disturbed every 
2 hours during the active phase to control for any unintended 
effects of repeated bottle changes by the experimenter.

Polysomnographic data acquisition and 
processing
Forty-eight-hour continuous PSG recordings consisting of 
24-hour baseline, 6-hour sleep deprivation, and 18-hour recovery 
began at light onset, zeitgeber time (ZT) 0. Data acquisition were 
performed on a computer running polysomnographic software 
(Sirenia Acquisition, Pinnacle Technologies, Lawrence, KS). Signals 
were amplified and high-pass filtered (0.5 Hz) via a preamplifier. 
EEG signals were low-pass filtered with a 40 Hz cutoff and col-
lected continuously at a sampling rate of 400 Hz. After collection, 
EEG and EMG waveforms were classified in 10-second epochs 
as: (1) wake (low-voltage, high-frequency EEG; high amplitude 
EMG); (2) non-rapid-eye movement (NREM) sleep (high-voltage, 

http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpad057#supplementary-data


Vincent et al.  |  3

mixed-frequency EEG; low-amplitude EMG); or rapid-eye move-
ment (REM) sleep (low-voltage EEG with a predominance of theta 
activity (6–10Hz); very low-amplitude EMG). All sleep scoring was 
performed by expert technicians blinded to the conditions of the 
experimental condition. EEG epochs determined to have artifacts 
(interference caused by scratching, movement, eating, or drink-
ing) were excluded from analysis. Artifacts comprised less than 
five percent of all records used for analysis.

NREM relative delta power was calculated for each 2-hour 
epoch by dividing NREM-specific delta (0.5–4.0Hz) power by 
NREM-specific total power for each EEG separately. These calcula-
tions were completed for each condition and an example formula 
is provided below:

Baseline NREM rDelta (ZT6-8) =
EEG1 delta power (ZT6-8)
EEG1 total power (ZT6-8)

Feature extraction was completed using a proprietary MATLAB 
script built in-house for the purpose of automatically extracting 
>40 sleep features of interest from data obtained using the Sirenia 
Acquisition platform described above. This script is available for 
free use upon request.

Animal treatment and immunofluorescence
Adult C57BL/6J mice (postnatal week 12; n = 33; male = 16, 
female = 17) were pseudo-randomly assigned to one of the follow-
ing groups: (1) undisturbed mice with ad libitum access to standard 
deionized water, CON; (2) sleep-deprived mice with ad libitum access 
to standard deionized water, CON + DEP; (3) undisturbed mice with 
ad libitum access to HRW, HRW; and (4) sleep-deprived mice with 
ad libitum access to HRW, HRW + DEP. HRW and HRW + DEP mice 
received 7 days of ad libitum access to HRW as described above. 
CON and CON + DEP mice had water bottles disturbed as described 
above. On day 7 of treatment, CON and HRW groups were allowed 
to sleep for 6 hours from ZT 0–6, while CON + DEP and HRW + DEP 
groups were sleep deprived for 6 hours by gentle handling. All 
groups were perfused at ZT6 (mean = ZT 6.61 ± 0.2). The difference 
in mean perfusion time between any two groups was no more than 
7 minutes. Mice were euthanized with Euthasol (150 mg/kg), per-
fused with 10 mL of 1× PBS, and then 10 mL of 4% paraformaldehyde 
(PFA). Brains were dissected out and post-fixed with 4% PFA at 4°C 
overnight, then transferred into a solution of 15% sucrose in 1×PBS. 
Fixed brains are preserved in 15% sucrose in 1×PBS + 0.1% Na azide 
until ready to cut.

Floating coronal sections (50 μm) were obtained on a cryostat 
(Leica) and collected sequentially into 24-well plates contain-
ing 1:1 ice-cold glycerol:PBS and stored at −20°C. A single person 
collected all the sections and brains from all four experimental 
conditions were sectioned during any single cryostat session to 
ensure that tissue collection conditions did not disproportionately 
influence any group(s). Sections were paired along the anterior–
posterior axis and stained. First, sections were blocked for 1 hour 
at room temperature (1% BSA, 0.3% Triton X-100, 10% normal don-
key serum in 1×PBS) and then incubated overnight at 4°C with a 
rabbit polyclonal antiserum against cFos (1:1000, Cell Signaling) 
followed by a Cy3-conjugated donkey-anti-rabbit secondary 
antibody (1:300, Jackson ImmunoResearch Laboratories, Bar 
Harbor, ME). Sections were mounted and coverslips applied with 
Vectashield mounting medium containing DAPI (4ʹ -6-diamidino-2- 
phenylinodole; Vector Laboratories, Burlingame, CA), and visual-
ized on a Zeiss AxioImager M2 microscope (Zeiss, Thornwood NY) 
equipped with an AxioCam MRm and the ApoTome imaging sys-
tem. Images (2–4 per each animal and condition) for counting were 
acquired using a 20X objective and the Tile tool of the Zeiss Zen 

digital imaging software. Regions of interest (ROIs) were defined 
and manually traced in ImageJ (National Institutes of Health; 
LOCI, University of Wisconsin) using the Allen Institute’s Mouse 
Brain Atlas (University of Washington) for reference. cFos-positive 
cells in the defined ROIs were counted with the aid of the cell 
counter plugin of ImageJ in at least two consecutive sections by 
two experts masked to the conditions. The values obtained by 
each observer in the 2–4 sections were averaged to obtain one 
value for each animal.

Statistical analysis
All data were analyzed using GraphPad Prism version 9.3.1. 
Sleep architecture data were analyzed using paired t-tests. Two-
way repeated measures ANOVA was used to analyze the effects 
of time and treatment on NREM and REM sleep during baseline 
and recovery recordings. Slow wave activity (SWA) was assessed 
across time and treatment conditions and, because SWA was 
assessed during NREM sleep only and there were some 2-hour 
epochs where NREM sleep did not occur, data were analyzed 
using a mixed-effects model. Multiple comparisons were cor-
rected for using Bonferroni’s method. For cFos immunofluores-
cence data, the total number cFos + cells were compared between 
groups using two-way ANOVA with sleep condition and treatment 
as factors. Post hoc comparisons between groups were made 
using Bonferroni’s multiple comparisons test or Benjamini and 
Hochberg’s method for controlling false discovery rate. Statistical 
significance was set at p < 0.05. Exact p-values and associated sta-
tistics are reported in figures and tables.

Results
HRW decreases time to sleep onset after light 
onset in undisturbed mice
Time to sleep onset after light onset is an indicator of sleep effi-
ciency used across species [22–24]. During ad libitum sleep in a 
12:12 LD cycle, sleep after light onset (often called “sleep latency” 
in mouse models) is a standard and commonly accepted meas-
urement of sleep efficiency and is part of the diagnostic criteria 
for sleep disorders like insomnia [25]. Several factors, including age 
[26], presence or absence of chronic pain [27], alcohol use [28], and 
exercise [29] can influence time to sleep onset. Here, we tested the 
hypothesis that HRW treatment would be sufficient to promote 
sleep in mice. During baseline, time to sleep onset is defined as 
the amount of time it takes for an animal to accumulate at least 
one bout (20 seconds or more) of NREM sleep after lights turn on 
at ZT 0. Time to sleep onset during recovery is the amount of time 
it takes an animal to accumulate at least one bout of NREM sleep 
following the termination of sleep deprivation at ZT 6. Following 7 
days of ad libitum access to HRW throughout their active phase, 
paired t-test revealed a statistically significant difference in time 
to sleep onset (p = 0.0313, t = 2.549, df = 9) during the undisturbed, 
baseline condition, with HRW-treatment reducing sleep onset by 
>50% (Figure 1A). Following 6 hours of acute sleep deprivation by 
gentle handling, we what we believe to be a ceiling effect in time 
to sleep onset as a marker for sleep efficiency (i.e. mice cannot fall 
asleep faster than “immediately”) and thus observe no effect of 
HRW during recovery (Figure 1B).

HRW treatment does not alter normal sleep 
amount
Mice have polyphasic sleep—while they accumulate most of 
their sleep during the inactive (light) phase, they still achieve 
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significant amounts of sleep during their active (dark) phase 
[30]. The sleep architecture of undisturbed C57BL/6J and their 
response to acute total sleep deprivation (increased NREM sleep, 
for instance) are well documented and highly stable [22, 31, 32]. 

During HRW treatment, two-way ANOVA reveals no effect of 
HRW on the robust typical distribution of NREM or REM through-
out baseline recording, during sleep deprivation, or during the 
18-hour recovery period (Figure 2A–D, Table 1).
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Figure 1.  HRW treatment is associated with decreased time to sleep onset. (A) Paired t-test with Benjamini and Hochberg post-test revealed a 
significant effect (p = 0.0313, t = 2.549, df = 9) of HRW treatment on time to sleep onset in undisturbed mice. (B) Following sleep deprivation, no 
effect of HRW was observed (p = 0.5765, t = 0.5795, df = 9). Baseline time to sleep onset is the time it takes an animal to accumulate a bout of NREM 
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correction reveal no significant effect of HRW on the distribution of NREM or REM sleep during 24-hour baseline or 18-hour recovery conditions. 
Multiple comparisons were corrected using Bonferroni’s multiple comparison test, with individual variance computed for each comparison. Icons 
represent the mean and error bars are standard deviation. Shaded boxes label the dark phase. See Table 1 for statistics.



Vincent et al.  |  5

HRW increases total NREM and REM sleep 
amount following sleep deprivation
In adult humans, total sleep has a significant impact on all-
cause mortality [8] and is an important clinical endpoint for 
sleep disorders [25] and several complex chronic conditions [33, 
34]. Recommendations from the American Academy of Sleep 
Medicine reflect decades of sleep research and state that fewer 
than 7 hours of sleep per night is inadequate to sustain health. In 
models where electrophysiology is not available, behavioral end-
points (quiescence, recumbent posture, increased arousal thresh-
old, etc.) frequently rely on total sleep amount as a primary 
endpoint to assess sleep quality. In our polysomnographic investi-
gation of mouse sleep, we observe no significant effect of HRW on 
NREM or REM sleep amount during baseline conditions (Figure 3, 
A and C); however, a slight increase in NREM sleep during the 
baseline active phase is near significance (p = 0.0524, t = 2.233, 
df = 9). We find that HRW treatment was associated with an 
increase in NREM (p = 0.0003, t = 5.767, df = 9) and REM (p = 0.0045, 
t = 3.757, df = 9) sleep amount (Figure 3, B and D), despite equiv-
alent sleep deprivation interventions (Figure 3E). While there are 
no significant differences in the often-used NREM gained-to-lost 
ratio (Figure 3F), this may be due to the endpoint’s insensitivity to 
phase-specific effects (Figure 3, B and D).

HRW increases sleep consolidation in 
undisturbed mice
Frequent awakenings and chronically poor sleep consolida-
tion are hallmarks of some neurodegenerative diseases [33, 34] 
and sleep apnea [35]. Previous reports demonstrate that signif-
icant sleep fragmentation challenges can impact process S and 
sleep-dependent physiological processes without significantly 
changing daily rhythms [36, 37]. To assess changes in fragmen-
tation, we evaluated (1) the number of brief arousals (periods of 
wake lasting ≤ 10 seconds, interrupting NREM), (2) the number of 
NREM bouts, and (3) the duration of NREM bouts. Paired t-test 

with Benjami and Hochberg post-test reveals a significant effect 
of treatment condition on brief arousals in undisturbed mice 
(Figure 4A), with mice experiencing a ~30% reduction in brief 
arousals following 7 days of ad libitum HRW treatment.

We also report a reduction in the number of NREM bouts 
(Figure  4B), and a non-significant increase in the duration of 
NREM bouts (Figure 4C) of HRW-treated baseline mice. These 
results suggest that HRW treatment may be meaningfully asso-
ciated with improved NREM sleep consolidation in undisturbed 
mice. There is no significant effect of HRW on measures of sleep 
fragmentation during recovery sleep. Importantly, we do observe 
a significant, expected effect of sleep deprivation on NREM 
bouts, with sleep-deprived mice experiencing fewer NREM bouts 
(p < 0.0001, t = 5.968, df = 19) of greater average length (p < 0.0443, 
t = 2.154, df = 19). This previously known effect of sleep depriva-
tion serves as an important positive control.

HRW treatment does not alter NREM delta 
features
Slow waves are low frequency (delta band, 0.5–4.0Hz), high amplitude 
oscillations that dominate the deepest stages of NREM sleep, whose 
changes in power are believed to reflect changes in sleep pressure. 
Measured in our study using EEG and presented as a fraction of total 
power, SWA is a commonly used metric for homeostatic dynamics 
in humans and animal models where EEG is currently available. 
Following sleep deprivation, mice demonstrate an expected rebound 
in NREM relative delta power (SWA) in EEG2 (Supplementary Figure 
S3), but mixed-effects analysis with Bonferroni post-test used to 
account for multiple reveals no significant differences across treat-
ment conditions (Figure 5, Table 2).

The effect of HRW on cellular activity in known 
sleep and arousal nuclei
HRW may have region-specific influence on central processes 
[21, 38] in rodent models, and recent work in humans shows that 

Table 1.  No Effect of HRW on Organization of Sleep Behavior

Source of variation SS F(DFn, DFd) P-value Summary

Baseline NREM

Time 125 152 F (11, 198) = 73.25 p < 0.0001 ****

Treatment 251.5 F (1, 18) = 0.9161 p = 0.3512 ns

Time × treatment 1652 F (11, 198) = 0.9666 p = 0.4782 ns

Baseline REM

Time 4266 F (11, 198) = 70.45 p < 0.0001 ****

Treatment 2.017 F (1, 18) = 0.09647 p = 0.7597 ns

Time × treatment 68.77 F (11, 198) = 1.136 p = 0.3353 ns

Recovery NREM

Time 168 826 F (11, 198) = 96.70 p < 0.0001 ****

Treatment 658.4 F (1, 18) = 2.826 p = 0.1100 ns

Time × treatment 2140 F (11, 198) = 1.225 p = 0.2720 ns

Recovery REM

Time 6287 F (11, 198) = 86.55 p < 0.0001 ****

Treatment 22.41 F (1, 18) = 2.970 p = 0.1019 ns

Time × treatment 60.53 F (11, 198) = 0.8333 p = 0.6069 ns

Within-participants comparisons by repeated measures of two-way ANOVA revealed no significant effect of HRW on the distribution of NREM or REM sleep 
during 24-hour baseline or 18-hour recovery conditions. Multiple comparisons were corrected for using Bonferroni’s multiple comparison test, with individual 
variance computed for each comparison.

http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpad057#supplementary-data
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high-dose HRW can increase choline‐to‐creatine ratio levels in 
certain brain regions and therefore alter brain metabolism [19]. 
It is unclear whether HRW influences the brain by meaningfully 
increasing H2 in the brain or through some second messenger [39].

In a separate study, we assessed changes in the expression of 
the immediate early gene cFos as a proxy for neuronal activity in 
several known sleep regulatory forebrain structures across four 
conditions: undisturbed, untreated mice (CON); sleep deprived, 
untreated mice (CON + DEP) undisturbed, HRW-treated mice 
(HRW); and sleep deprived, HRW-treated mice (HRW + DEP).

We observe no effect of HRW on the number of cFos + cells in 
the forebrain diagonal band neurons (DB, Figure 6). While there 
was a significant effect of HRW treatment in the lateral septum 
(LS, Figure 7), medial septum (MS, Figure 7), the ventrolateral pre-
optic area (VLPO, Figure 8), and the median preoptic area (MnPO, 
Figure 9). We also observe a significant effect on cFos immunore-
activity of 6 hours of acute sleep deprivation on the MS, LS, VLPO, 
and MnPO. Results in the MS and LS are consistent with previous 
reports [40], but the increase in cFos immunopositive cells elicited 
by sleep deprivation in the VLPO and MnPO does not appear to 

CON HRW
0

350

700

B
as
el
in
e
N
R
E
M
(m
in
)

CON HRW CON HRW
0

350

700
#

Inactive
phase

Active
phase

CON
+DEP

HRW
+DEP

0

350

700

R
ec
ov
er
y
N
R
E
M
(m
in
)

CON
+DEP

HRW
+DEP

CON
+DEP

HRW
+DEP

0

350

700

Inactive
phase

Active
phase

CON HRW
0

60

120

B
as
el
in
e
R
E
M
(m
in
)

CON HRW CON HRW
0

60

120

Inactive
phase

Active
phase

CON
+DEP

HRW
+DEP

0

60

120

R
ec
ov
er
y
R
E
M
(m
in
)

CON
+DEP

HRW
+DEP

CON
+DEP

HRW
+DEP

0

60

120

Inactive
phase

Active
phase

CON HRW
0

40

80

N
R
EM

du
rin
g
SD

(m
in
)

CON HRW
0.00

0.75

1.50

N
R
E
M
ga
in
ed
:lo
st

A B
Baseline Recovery

C D

E F

Figure 3.  HRW significantly increases NREM and REM sleep following sleep deprivation. (A, C) Paired t-tests with Benjamini and Hochberg post-test 
suggest no effect of HRW on total NREM or REM amount in baseline recordings, though NREM active phase differences between treatment groups 
approach significance (#; p = 0.0524, t = 0.200, df = 9). (B, D) Paired t-test suggests that following 6 hours of sleep deprivation, HRW-treated mice 
accumulated more NREM (p = 0.0012, t = 4.626, df = 9) and REM sleep (p = 0.0145, t = 3.021, df = 9) - this effect is specific to the active phase for both 
NREM (p = 0.0003, t = 5.767, df = 9) and REM sleep (p = 0.0045, t = 3.757, df = 9) during the recovery from sleep deprivation. (E) Paired t-test revealed no 
differences in the effectiveness of sleep deprivation between HRW-treated and control conditions (p = 0.725, t = 0.3804, df = 9). (F) Despite differences 
in recovery sleep and approximately equivalent sleep deprivations, we observe no significant differences in NREM gained-to-lost ratio (p = 0.2078, 
t = 1.357, df = 9). Horizontal bars represent mean. Circles are female. Diamonds are male. Shaded box labels dark phase.
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Figure 4.  HRW treatment is associated with a significant reduction in brief arousals. (A-B) Paired t-test with Benjamini and Hochberg post-test 
reveals a significant effect of HRW treatment on brief arousals during 24-hour baseline recording (p = 0.0045, t = 3.758, df = 9) but not in the 18-hour 
recovery period following sleep deprivation (p = 0.2477, t = 1.236, df = 9). (C-F) Despite differences in brief arousals, paired t-test reveals no significant 
differences in the number of NREM bouts each animal experiences during baseline (p = 0.4535, t = 0.7835, df = 9) nor recovery (p = 0.3838, t = 0.9154, 
df = 9) nor the duration of those bouts during baseline (p = 0.4379, t = 0.8118, df = 9) or recovery (p = 0.9175, t = 0.1066, df = 9). A brief arousal is counted 
each time a single 10-second epoch of wake interrupts a bout of NREM sleep. A bout is two or more adjacent 10-second epochs of the same arousal 
state (NREM, REM, and wake). Horizontal bars represent mean. Solid circles are female. Diamonds are male.
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have been previously reported in mice, despite numerous reports 
of sleep–active neurons in these areas. Finally, two-way analysis 
suggests a main effect of treatment in all ROIs, and a main effect 
of sleep in the MS, LS, VLPO, and MnPO (Table 3). Bonferroni post-
test reveals multiple comparisons with statistically significant 
differences (Figures 7–9) and that a moderate effect of treatment 
in the DB is specific to recovery sleep (Figure 6).

Discussion:
We conducted a randomized, within-participants investigation 
of HRW and sleep–wake behavior in adult wild-type C57BL/6J 
mice to test the hypothesis that HRW may be sufficient to alter 
sleep–wake architecture. Following 7 days of ad libitum access to 
HRW during their active phase, 24-hour baseline polysomnogra-
phy was collected, followed by 6 hours of sleep deprivation and a 
subsequent 18-hour recovery period. Mean latency to sleep onset 
was dramatically reduced by >50% following 7 days of HRW treat-
ment (Figure 1A) without altering daily rhythms of sleep–wake 
behavior or the typical structure of recovery sleep (Figure 2). For 
context, some drugs currently prescribed for insomnia may only 
decrease sleep latency by less than 20% [41, 42]. We also observed 
a significant reduction of brief arousals in undisturbed mice dur-
ing baseline (Figure 4A) but not after sleep deprivation (Figure 4B) 
where brief arousals were significantly reduced, as expected, in 
the control treatment condition. This reduction in brief arousals 
in HRW-treated mice was not accompanied by significant changes 
to the total number of NREM bouts or their duration (Figure 4, 
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Figure 5.  HRW does not alter relative delta power during baseline or recovery sleep. Mixed-effects analysis with Bonferroni post-test reveals no effect 
of HRW on relative delta power during baseline or during recovery from sleep deprivation. Twenty-four-hour distribution of SWA presented as relative 
delta power in HRW (outlined triangle) and water-treated (black triangle) mice. Icons represent the mean relative delta power for each animal during 
a 2-hour window, and error bars are standard error (SEM). Shaded box labels dark phase. Dashed bar represents the 6-hour sleep deprivation period.

Table 2.  HRW Treatment Does Not Alter Slow Wave Activity 
During Baseline or Recovery Sleep

Fixed effects (type 
III)

F(DFn, DFd) P-value Summary

EEG1—baseline

Time F (2.591, 44.29) = 7.513 p = 0.0006 **

Treatment F (1, 19) = 0.2014 p = 0.6587 ns

Time × treatment F (11, 188) = 1.348 p = 0.2008 ns

EEG1—recovery

Time F (3.179, 54.85) = 9.492 p < 0.0001 ****

Treatment F (1, 18) = 0.002776 p = 0.9586 ns

Time × treatment F (8, 138) = 0.8755 p = 0.5389 ns

EEG2—baseline

Time F (3.316, 53.96) = 16.91 p < 0.0001 ****

Treatment F (1, 18) = 0.4276 p = 0.5214 ns

Time × treatment F (11, 179) = 0.9781 p = 0.4680 ns

EEG2—recovery

Time F (1.291, 22.28) = 9.534 p = 0.0031 **

Treatment F (1, 18) = 0.0006621 p = 0.9798 ns

Time × treatment F (8, 138) = 0.5450 p = 0.8208 ns

Mixed-effects analysis with multiple comparisons and Bonferroni’s post-test 
reveals an expected main effect of time during baseline and recovery sleep, 
but no effect of HRW. Significant results are in bold.



Vincent et al.  |  9

C–F). Total NREM and REM sleep amounts were unchanged dur-
ing baseline of each treatment condition (Figure 4, A and C). Note 
that brief arousals were counted without ending the “interrupted” 
sleep bout.

Following sleep deprivation, mice in the HRW-treatment con-
dition experienced significantly increased NREM (Figure 3B) and 
REM (Figure 3D) sleep which appears to have been principally 
driven by differences in active-phase sleep behavior. It is pos-
sible that the effect of HRW on recovery sleep is specific to the 
active phase because sleep pressure is already near its ceiling 
immediately following 6 hours of sleep deprivation. While direct 
observation of HRW half-life post-HRW-administration in mice 
(by gas chromatography, for example) has not been previously 
reported, data from other model species suggests that H2 persists 
in the body for a few hours, though its protective effects post-
administration in small mammals may last several days [43]. 
While we report changes in behavioral markers of sleep pressure 
(time to sleep onset, NREM amount, and sleep consolidation), a 
mixed-effects analysis with multiple comparisons and Benjamini 
and Hochberg correction reveals no effect of HRW on NREM rel-
ative delta power during undisturbed conditions nor during the 
recovery from sleep loss (Figure 5). It may be the case that SWA 
is not a sensitive enough marker to reflect the subtle changes in 
sleep pressure induced by HRW. It may also be that direct activity 
changes in sleep regulatory systems unrelated to sleep homeo-
stasis drive the effect of HRW on sleep.

To elucidate the effect of HRW on several sleep-related fore-
brain nuclei, we performed a between-participants mapping of 
cFos immunopositive cells in forebrain, hypothalamic, and mid-
brain structures across four groups: undisturbed, untreated mice 
(CON); sleep deprived, untreated mice (CON + DEP) undisturbed, 
HRW-treated mice (HRW); and sleep deprived, HRW-treated mice 
(HRW + DEP). We report here region-specific changes in sleep- 
and arousal-related forebrain structures. Three-way ANOVA with 
Bonferroni post-test reveals that changes in neuronal activation 
by HRW were largely unaffected by sex (Supplementary Table S1).

Septal nuclei are functionally and chemically heterogene-
ous forebrain structures often implicated in regulating social 
behaviors, stress, and feeding [44, 45]. Septal nuclei were recently 
demonstrated to receive sleep-related signals from the hip-
pocampus in rats [46]. Chemogenetic activation of GABAergic 
neurons in the LS is sufficient to significantly increase NREM 
sleep amount [47]. The medial septum (MS) is repeatedly impli-
cated in stress regulation that receives arousal-promoting projec-
tions from hypocretin-producing lateral hypothalamus neurons 
[48]. We report a significant increase in the number of cFos + cells 
of LS and the MS neurons following HRW treatment (Figure 7, 
Table 3). The directional relationship between observed sleep 
changes in HRW-treated mice and the increase in cellular activity 
in the forebrain structures reported here is unclear, though it is 
possible that these changes reflect the activity of local inhibitory 
interneurons.
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Figure 6.  Moderate effect of HRW in the diagonal band is exclusive to recovery sleep. Total number of cFos + cells in the diagonal band. (top) A two-
way analysis reveals a main effect of treatment (p = 0.0314, F(1,57) = 4.866). Bonferroni post-test reveals that the moderate effect of treatment in the 
DB is specific to recovery sleep (p = 0.0424, t = 2.794, df = 57). (Bottom) Representative coronal sections of diagonal band, boundaries outlined in dotted 
lines. Horizontal bars represent mean. See Table 3 for complete two-way ANOVA table. *, p < 0.05.

http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpad057#supplementary-data
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Hypothalamic nuclei have long been thought to play diverse, 
important roles in sleep and arousal [49–51]. GABAergic and 
galanergic neurons in the preoptic area send inhibitory projec-
tions to important arousal-promoting nuclei, including the hista-
minergic neurons of the tuberomammillary nucleus (TMN) [49]. 
Optogenetic stimulation of these preoptic area neurons leads to 
increased SWA in mice. Chemogenetic activation of galanergic 
neurons in the VLPO significantly reduces sleep latency. Kroeger 
et al. [50] and others [for a review, 73] suggest that inhibitory 
neurons in the preoptic area may be central to the homeostatic 
organization of mammalian sleep. Here we report that HRW is 
sufficient to increase several important markers of sleep pressure 
but, importantly, we report no alterations to NREM SWA.

Inadequate sleep is diversely problematic for individuals and 
society. Chronic sleep loss shortens life and health span [8–10] 
and increases the risk of motor vehicle accidents [42]. Complex 
environmental, behavioral, and socioeconomic factors can make 
it difficult for people to routinely get sufficient opportunities for 
rest. Sleep disorders like insomnia make regular sleep difficult, 
even with sufficient opportunity. Emerging technologies offer per-
sonalized insights, and researchers access to ecologically valid 
sleep assessment [52], yet treatment options for poor and disor-
dered sleep are limited, despite long-time public and scientific 
interest [13, 53].

Hydrogen is the most abundant chemical substance on the 
planet. As a therapeutic, hydrogen gas (H2) is nontoxic and has 
no known lethal dose or deleterious side effects. It has demon-
strated the capacity to reduce oxidative stress, upregulate impor-
tant immunological pathways, offset the effects of chemical 
and physiological challenges, and improve various metabolic 
conditions [39]. Significant sleep disturbances are common in 
patients with Parkinson’s disease (PD), with insomnia and day-
time sleepiness frequently reported by patients and bed partners 
[54]. 6-hydroxydopamine (6-OHDA)-induced Parkinson’s disease 
is a frequently used rat model of PD, typified by the selective and 
rapid destruction of catecholaminergic neurons by administra-
tion of a neurotoxin [55]. Acute administration of HRW immedi-
ately pre- and post-administration of 6-OHDA is sufficient to (a) 
ameliorate the dopaminergic cell loss that typifies this model of 
PD and (b) alter dopamine-related behavior [20]. The substantia 
nigra, where dopamine is produced, and whose deterioration is 
a hallmark of PD, is an important sleep-regulatory region with 
essential roles in regulating arousal and REM sleep [56]. Together, 
acute administration of HRW has demonstrated the ability to 
regulate sleep-dependent processes (immunity and metabolism), 
and to act as a neuroprotectant in known sleep regulatory regions 
during a chemical challenge. These observations may underlie 
the results reported in this study.
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Figure 7.  HRW-treated mice have significantly increased cFos + cells in septal nuclei. Total number of cFos + cells in the septal nuclei. (top, left; medial 
septum) A two-way analysis reveals a main effect of treatment (p = 0.0015, F(1,69) = 10.87) and sleep deprivation (P = 0.0015, F(1,69) = 22.18), and a 
statistically significant interaction of sleep and treatment conditions (p = 0.0067, F(1,69 = 7.825) in the MS. Bonferroni post-test reveals a significant 
effect of sleep deprivation in HRW-treated mice (p < 0.0001, t = 5.046, df = 69) and a significant effect of HRW in undisturbed mice (p = 0.0003, t = 4.373, 
df = 69). (top, right; lateral septum) A two-way analysis reveals a main effect of treatment (p < 0.0001, F(1,67) = 22.36) and sleep deprivation (p = 0.0001, 
F(1,67) = 16.55), and a statistically significant interaction of sleep and treatment conditions (p = 0.0002, F(1,67 = 15.35) in the LS. Bonferroni post-test 
reveals a significant effect of sleep deprivation in HRW-treated mice (p < 0.0001, t = 5.552, df = 67) and a significant effect of HRW in undisturbed mice 
(p < 0.0001, t = 6.224, df = 67). (Bottom) Representative coronal sections of septal nuclei, boundaries outlined in dotted lines. Horizontal bars represent 
mean. See Table 3 for complete two-way ANOVA table. ***, p < 0.001; ****, p < 0.0001.
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Conclusion
HRW has tractable effects on sleep–wake architecture and sleep 
consolidation. It decreases the amount of time for mice to fall 
asleep after light onset and it reduces sleep–wake fragmenta-
tion. During recovery from sleep deprivation, HRW increases both 
NREM and REM sleep amounts. HRW also increased neuronal 
activation in sleep regulatory regions of the brain, particularly 
in the VLPO and MnPO. Since neuronal activation in these brain 
areas is associated with promoting sleep, these results suggest 
that the effects of HRW are altering the neuronal regulation of 
sleep states, and may be a promising supplement for individuals 
experiencing from poor sleep efficiency.

Limitations
This direct investigation of HRW and sleep in mice is the first of 
its kind. Every effort was taken to ensure the responsible assess-
ment of HRW’s ability to influence arousal states and the recov-
ery from sleep loss, including clearly defined positive controls 
for back testing, behavioral (sham) environmental disruptions to 
avoid unintended consequences of bottle replacements, blinded 
scoring of arousal behavior, and regular intra-scorer reliabil-
ity testing to confirm very high agreement (>95%) among sleep 

scorers (see Methods). One limitation of this work is the ad libi-
tum administration of HRW during the sleep assessment exper-
iments. This route of administration was intentionally chosen 
as alternative administration routes that would provide greater 
control of dosage and timing (e.g. oral gavage) are anxiogenic and 
would significantly confound our assessment of arousal state by 
PSG. We believe our implementation of ad libitum administra-
tion reasonably reflects a possible real-world condition; though, 
admittedly, it is more likely that HRW would be administered in 
single doses at one or multiple times per day as has been seen in 
human trials [57–59].

Determining the relative dose of molecular hydrogen between 
mice and humans is complex, as several factors may be at play 
regarding molecular hydrogen’s therapeutic abilities. Significant 
evidence points to H2 working as a mitohormetic effector [14], 
as well as working in a dose-dependent manner [60]. As with all 
hormetic stressors, there will eventually be a plateau and decline 
when the stress is too significant, but this decline has not been 
observed in research thus far. The relative dosage of H2 could be 
calculated based on the average weight of the mice and average 
consumption of water and this could be compared to human 
consumption in clinical trials (in mg/H2). However, a one-to-one 
comparison of mg/H2 consumed may misrepresent physiologi-
cally relevant dosage, as relevant differences between humans 
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Figure 8.  HRW-treated mice have significantly increased cFos expression in VLPO. Total number of cFos + cells in the ventrolateral preoptic nucleus. 
(Top) A two-way analysis reveals a main effect of treatment (p = 0.0113, F(1,68) = 6.785) and sleep deprivation (p = 0.0037, F(1,68) = 9.051), and a 
statistically significant interaction of sleep and treatment conditions (p = 0.0277, F(1,68) = 5.059) in the VLPO. Bonferroni post-test reveals a significant 
effect of sleep deprivation in HRW-treated mice (p < 0.0001, t = 5.046, df = 69) and a significant effect of HRW in undisturbed mice (p = 0.0003, t = 4.373, 
df = 69). (bottom) Representative coronal sections of the VLPO, boundaries outlined in dotted lines. Horizontal bars represent mean. See Table 3 for 
complete two-way ANOVA table. *, p < 0.05; **, p < 0.01.
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Table 3.  Two-way ANOVA Statistics for Brain Regions of Interest

Source of variation SS F(DFn, DFd) P value Summary

Diagonal band (DB)

Sleep 933.4 F (1, 57) = 2.951 p = 0.0913 ns

Treatment 1539 F (1, 57) = 4.866 p = 0.0314 *

Sleep × treatment 1089 F (1, 57) = 3.444 p = 0.0687 ns

Medial septum (MS)

Sleep 2372 F (1, 69) = 22.18 p < 0.0001 ****

Treatment 1163 F (1, 69) = 10.87 p = 0.0015 **

Sleep × treatment 837 F (1, 69) = 7.825 p = 0.0067 **

Lateral septum (LS)

Sleep 153 494 F (1, 67) = 16.55 p = 0.0001 ***

Treatment 207 405 F (1, 67) = 22.36 p < 0.0001 ****

Sleep × treatment 142381 F (1, 67) = 15.35 p = 0.0002 ***

Ventrolateral preoptic area (VLPO)

Sleep 127.3 F (1, 68) = 9.051 p = 0.0037 **

Treatment 95.42 F (1, 68) = 6.785 p = 0.0113 *

Sleep × treatment 71.14 F (1, 68) = 5.059 p = 0.0277 *

Median preoptic area (MnPO)

Sleep 366.8 F (1, 66) = 9.697 p = 0.0027 **

Treatment 583.7 F (1, 66) = 15.43 p = 0.0002 ***

Sleep × treatment 776.3 F (1, 66) = 20.52 p < 0.0001 ****

A two-way analysis suggests a main effect of treatment in all regions of interest, and a main effect of sleep in the MS, LS, VLPO, and MnPO. Bonferroni post-test 
reveals multiple comparisons with statistically significant differences (see Figures 7–9) and that the moderate effect of treatment in the DB is specific to recovery 
sleep (Figure 6).
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Figure 9.  HRW-treated mice have significantly increased cFos induction in MnPO. Total number of cFos + cells in the median preoptic nucleus. (top) 
A two-way analysis reveals a main effect of treatment (p = 0.0002, F(1,66) = 15.43) and sleep deprivation (p = 0.0027, F(1,66) = 9.697), and a statistically 
significant interaction of sleep and treatment conditions (p < 0.0001, F(1,66) = 20.52) in the MnPO. Bonferroni post-test reveals a significant effect of 
sleep deprivation in HRW-treated mice (p < 0.0001, t = 5.109, df = 66) and a significant effect of HRW in undisturbed mice (p < 0.0001, t = 6.475, df = 66). 
(bottom) Representative coronal sections of the MnPO, boundaries outlined in dotted lines. Horizontal bars represent mean. See Table 3 for complete 
two-way ANOVA table. ****, p < 0.0001.
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and mice extend beyond mass. For example, H2 has been hypoth-
esized to drive liver homeostasis [61]. Pharmacokinetic research 
has shown that a percentage of the H2 entering the liver is metab-
olized in an as yet unknown way. Metabolic rates are estimated 
to be 12.3× higher in mice than in humans [62] and it is currently 
unknown how or if liver metabolism changes the pharmacoki-
netic properties of H2, or increases its therapeutic properties.

Oral gavage (and sham gavage) for the IHC study reported here 
enabled a greater level of temporal control over HRW dosing. 
However, as there are previous demonstrations of dose-dependent 
effects of HRW in various models [39], it is possible that the regions 
implicated by acute administration by gavage are wholly separate 
from the unknown mechanism(s) underlying changes to sleep 
behavior following ad libitum administration. The results of the 
experiments described above sufficiently justify the use of more 
invasive in vivo tools with cell-type and region specificity (e.g. opto-
genetics and chemogenetics), employed in parallel with PSG, to 
clarify the role of sleep regulatory systems in HRW-associated sleep 
changes. Finally, while immediate early gene activity reported here 
does not provide cell-type specific information, these results rep-
resent an important first step toward elucidating the mechanisms 
underlying the sleep-promoting effects of HRW in mice.

Supplementary Material
Supplementary material is available at SLEEP Advances online.
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